自然数は半順序集合
補題: 具体的な数字に関する否定等号と不等式
variable {m n k : MyNat}
/-- `0 ≠ 1` が成り立つ -/
@[simp, grind =>]
theorem MyNat.zero_ne_one : 0 ≠ 1 := by
intro h
injection h
/-- `1 ≠ 0` が成り立つ -/
@[simp]
theorem MyNat.one_neq_zero : 1 ≠ 0 := by
intro h
injection h
@[simp, grind =>]
theorem MyNat.not_zero_le_one : ¬ (1 ≤ 0) := by
intro h
cases h
半順序集合
@[grind →]
theorem MyNat.le_antisymm (h1 : n ≤ m) (h2 : m ≤ n) : n = m := by
induction h1 with grind
/-- `MyNat`は半順序集合 -/
instance : Lean.Grind.PartialOrder MyNat where
le_antisymm := MyNat.le_antisymm